A new study suggests the Kilauea volcanic eruption in 2018 was initiated by extreme rainfall.
Are these guys really geologists?
The May 2018 rift intrusion and eruption of Kīlauea Volcano, Hawai‘i, represented one of its most extraordinary eruptive sequences in at least 200 years, yet the trigger mechanism remains elusive.
The event was preceded by several months of anomalously high precipitation.
It has been proposed that rainfall can modulate shallow volcanic activity, but it remains unknown whether it can have impacts at the greater depths associated with magma transport.
In this new study, the authors show that immediately before and during the eruption, infiltration of rainfall into Kīlauea Volcano’s subsurface increased pore pressure at depths of 1 to 3 kilometres by 0.1 to 1 kilopascals, to its highest pressure in almost 50 years.
The scientists propose that weakening and mechanical failure of the edifice was driven by changes in pore pressure within the rift zone, prompting opportunistic dyke intrusion and ultimately facilitating the eruption.
A precipitation-induced eruption trigger is consistent with the lack of precursory summit inflation, showing that this intrusion — unlike others — was not caused by the forceful intrusion of new magma into the rift zone.
Moreover, statistical analysis of historic eruption occurrence suggests that rainfall patterns contribute substantially to the timing and frequency of Kīlauea’s eruptions and intrusions.
Thus, volcanic activity can be modulated by extreme rainfall triggering edifice rock failure — a factor that should be considered when assessing volcanic hazards.
Notably, the increasingly extreme weather patterns associated with ongoing anthropogenic climate change could increase the potential for rainfall-triggered volcanic phenomena worldwide.
What do you think about this new theory? More volcanic news on Strange Sounds and Steve Quayle. [Nature]